Multilinear Image Analysis for Facial Recognition
نویسندگان
چکیده
Natural images are the composite consequence of multiple factors related to scene structure, illumination, and imaging. For facial images, the factors include different facial geometries, expressions, head poses, and lighting conditions. We apply multilinear algebra, the algebra of higherorder tensors, to obtain a parsimonious representation of facial image ensembles which separates these factors. Our representation, called TensorFaces, yields improved facial recognition rates relative to standard eigenfaces.
منابع مشابه
A Novel Tensor Perceptual Color Framework based Facial Expression Recognition
The Robustness of Facial Expression Recognition (FER) is based on information contained in color facial images. The Tensor Perceptual Color Framework (TPCF) enables multilinear image analysis in different color spaces. This demonstrates that the color components provide additional information for robust FER. By using this framework color components RGB, YCbCr, CIELab or CIELuv space of color im...
متن کاملMultilinear Subspace Analysis of Image Ensembles
Multilinear algebra, the algebra of higher-order tensors, offers a potent mathematical framework for analyzing ensembles of images resulting from the interaction of any number of underlying factors. We present a dimensionality reduction algorithm that enables subspace analysis within the multilinear framework. This N -mode orthogonal iteration algorithm is based on a tensor decomposition known ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملModel-Based and Image-Based Methods for Facial Image Synthesis, Analysis and Recognition
We review several model-based and image-based methods that we have developed for analyzing, synthesizing, and recognizing facial images. Our model-based methods include a sophisticated, functional model of the human face/head, which incorporates a biomechanical tissue model with embedded muscle actuators, and techniques for applying it to computer animation and expression estimation in video. O...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کامل